Nanotechnology involves manipulating atoms and molecules to give structures new chemical and physical properties. Nanotechnology devices have a wide range of applications, such as electronics, medicine, energy, textiles and more.
These devices typically have a scale of fewer than 100 nanometers (nm). A nanometer is a very small unit of measurement equal to one billionth of a meter. For reference, a sheet of paper is about 100,000 nanometers thick.
Nanotechnology refers to the practice of manipulating atoms and molecules at the nanoscale, which is between one and 100 nanometers. By making alterations at the atomic level, researchers can transform the chemical and physical properties of a substance. This can lead to new macrotechnologies with enhanced properties, including greater endurance and increased conductivity.
Importantance of Nanotechnology
We can use nanotechnology to create materials, devices and systems with unique properties and functions. The very small size of the materials allows them to exhibit different physical and chemical properties than the same materials at a larger scale. Due to their small size, nanomaterials have a large surface area-to-volume ratio, which can lead to increased reactivity, strength and conductivity.
Additionally, the small size of nanomaterials allows them to be easily incorporated into a wide variety of products and processes, including electronic devices, medical treatments, energy production and environmental remediation.
The properties of nanomaterials also make them useful for creating new products and improving existing ones, such as increasing the efficiency of solar cells and batteries, creating stronger and more durable materials for construction and developing more effective medical treatments.
How Is Nanotechnology Made?
There are several methods for creating nanomaterials, including:
1. Top-down approaches
Starting with a larger piece of material, we can use tools like lithography to carve or etch the material down to the nanoscale. Scientists do this using various techniques such as laser ablation, chemical etching or mechanical milling. This approach is used during the fabrication of integrated circuits in electronics.
2. Bottom-up approaches
These techniques involve building up materials from smaller components, such as atoms or molecules. This can be done using techniques such as chemical synthesis or self-assembly. One example of an application of nanotechnology where a bottom-up approach is used is the synthesis of nanoparticles.
The Global Nanotechnology Market
Many experts believe that nanotechnology will bring about a new era of productivity and wealth, and this is reflected in the growth in public investment in technologies and research over the past two decades.
The global nanotechnology market was valued at $1.76 billion in 2020. By 2030, this is predicted to rise to around $33.63 billion, representing a compound annual growth rate of 36.4%. However, the COVID-19 pandemic and associated lockdowns limited the market’s growth in 2020 and 2021.
Segments of the global nanotechnology market are also showing promising growth. The global graphene market was valued at 175.9 million in 2022 and is expected to grow at an impressive CAGR of 46.6% from 2023 to 2030. In addition, the global lipid nanoparticle market was valued at 777.4 million in 2022 and is expected to grow at a CAGR of 13.6% through 2029.
Nanotechnology research has a global footprint, with major players in the US, UK, Europe, and Asia-Pacific region. Globally, according to the US National Nanotechnology Initiative, there are around 20,000 researchers working in the field. The Asia-Pacific region is predicted to see the highest growth in the coming decade.
Many global organizations are now investing in emerging applications in the nanotechnology market. Nanodevices are predicted to be the most lucrative market segment over this decade, and many emerging trends are accelerating growth in the nanotech field.
While the growing adoption of nanoscale materials and devices in biomedical and engineering fields is driving significant growth in the global nanotech market, there are some key challenges that hinder the widespread commercial adoption of devices.
Major restraining factors are the high cost of technologies and their performance and reliability in extreme weather conditions. However, increased government support and funding and the emergence of innovative self-powered devices are predicted to offer lucrative opportunities for the market in the coming years.
There are several companies currently investing in nanotechnology research, including Thermo Fisher Scientific, eSpin Technologies Inc., Biosensor International, Kleindiek Nanotechnik GmbH, and Altair Nanotechnologies Inc. Several collaborations between companies and academic institutions are ongoing.
Countries such as Brazil, India, the Philippines, Chile, Mexico, and South Africa have established government-funded programs and research institutes, with many developing nations emerging as frontrunners in nanotechnology research. The nanotechnology market is one of global cooperation and endeavor.
Types of Nanomaterials
Nanomaterials can broadly be categorized into four types: inorganic-based nanomaterials, carbon-based nanomaterials, organic-based nanomaterials, and composite-based nanomaterials.
Inorganic-based nanoparticles are generally non-toxic, hydrophobic, biocompatible and highly stable. They are often used in biomedicine applications due to these properties. Examples of inorganic-based nanoparticles include metal and metal oxide nanomaterials.
Carbon-based nanoparticles have low toxicity, are stable, and have high electrical conductivity, flexibility and optical transparency. Their properties lend them for use in sensing applications, among others. Examples of carbon-based nanoparticles include graphene, fullerene, and carbon nanotubes.
Organic nanoparticles are biocompatible, biodegradable, and non-toxic. Examples of organic nanoparticles include liposomes, layered biopolymers, dendrimers, protein aggregates, lipid bodies, and milk emulsions.
Composite-based nanoparticles have properties such as ductility, high strength, electrical conductivity, heat resistance, and increased barrier properties. They are often used in sensor technology. Composite-based nanoparticles encompass a vast range of materials that are constructed by combining various pairs of nanoparticles. Many composites use carbon nanotubes, quantum dots and graphene within the pairs of materials.
Quasi-one dimensional nanowires have been produced from materials such as carbon, silicon, germanium, and conductive metals such as copper. Polymer and carbon nanofibers have a large surface area-to-volume ration, good mechanical strength, high porosity, and functionalization flexibility compared to microfibers.
Carbon nanotubes have remarkable thermal and electrical conductivity and exceptional tensile strength. The properties of carbon nanotubes have led to interest in them in multiple fields. Quantum dots are semiconducting nanocrystals with unique properties between discrete molecules and bulk semiconductors.
Nanocomposites are manufactured from two different constituent materials (typically a polymer and an inorganic solid such as clay or oxide) with their own unique chemical or physical properties, producing a material with superior properties to its constituent materials. Some are up to 1,000 times tougher than bulk components.
Graphene is perhaps the most well-known nanomaterial. It was discovered in 2004 by Andre Geim and Konstantin Novoselov. The material has unique properties; it is strong yet flexible and lightweight with high resistance. It is also the thinnest material ever discovered and is 200 times stronger than steel.
Thanks to these advantageous properties, the material has found applications in electronics, energy storage, composites, coatings, biomedical devices, sensors, drug delivery, tissue engineering, and more. One of its most memorable applications was its use in a groundbreaking graphene-based MRI contrast agent, which allows for improved disease diagnosis.
MXenes are two-dimensional layered ceramic materials made from a bulk crystal called MAX. These materials have excellent conductivity and volumetric capacitance and are often used in energy storage, optoelectronics, and in medicine. They have great potential as antibacterial agents.
Lipid nanoparticles are simply nanoparticles made from lipids. They have made headlines recently due to their use in COVID-19 mRNA vaccines as mRNA carriers. The material has also been used successfully in small-molecule delivery in nanomedicine.
Quantum dots are nanoscale crystals with semiconducting properties that were first discovered in 1980. Their core is often made of heavy metal, such as cadmium selenide, lead selenide, or indium selenide. They can convert the spectrum of light into different colors and are used in an array of applications, including drug delivery, diagnostics, medical imaging and solar cells. Quantum dots also have the potential to support the development of the quantum computer.
Carbon nanotubes are constructed from rolled-up sheets of graphene. Their excellent electrical conductivity and mechanical strength have seen carbon nanotubes adopted by a number of industries in a range of applications, including targeted drug delivery, nerve cell regeneration, aircraft construction, energy storage, water purification, coatings, electronics and more.
0 Comments